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I. INTRODUCTION ' |

Spectral estimation refers to the problem of estimating the spectral
density function of a stationary random signal which is observable only
over a finite duration. For a deterministic signal it implies estimation é
of its magnitude spectrum. In either case, if the signal were known over i
the infinite interval, the Fourier transform of the signal or its auto- j
correlation would immediately yield the spectrum. Thus, any estimated spectrum

is equivalent to specifying the signal or its autocorreldtion outside the

observation interval--i.e., its extrapolation.
In this report we consider several algorithms for extrapola‘ion and

spectral estimation of discrete time signals. First, we briefly review

T

the maximum entropy (ME) or the linear predictive autoregressive (AR)
method, and some iterative and matrix inverse based extrapolation
algorithms developed recently by Papoulis [8], Sabri and Steenaart [10],
and Cadzow [11].
The new results presented here are as follows.
1) Papoulis' iterative algorithm applied in discrete time domain converges
' to an extrapolated signal which is a minimum norm least squares

type solution. It is seen to be a special case of a one step gradient

algorithm, and has linear convergence. The convergence of this can

be improved by suitably modifying it to a steepest descent algorithm.
2) Sabri and Steenaart [10] have reformulated Papoulis' iterative algorithm

in terms of an extrapolation matrix operator E_ which yields the

extrapolated signal when it operates on the given time truncated

signal. It is proven that the infinite operator, E_ does not exist,

but its finite truncation EN exists, but it is ill-conditioned.
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3) It is known that a continuous (time) band limited signal given over
a finite observation interval can be extrapolated exactly outside this
interval by means of Prolate Spheroidal Wave Functions (PSWF). We
show that for the discrete time case a similar expansion arises when
we consider the minimum norm least squares extrapolation.
Then we present three other algorithms which are as follows:

4) Conjugate Gradient Iterative Extrapolation

5) Minimum Mean Square Extrapo]ation'Filter

6) Recursive Least Squares Extrapolation Filter

The conjugate gradient method is an iterative algorithm which yields
a psuedo inverse extrapolation operator. Compared to the earlier iterative
methods [8-11], this algorithm converges quite rapidly. The minimum mean
square extrapolation algorithm is designed for applications where the
observed band limited signal is contaminated by wideband white noise. It
yields a simple, Wiener filter type, extrapolation operator which requires
inversion of a matrix whose size is equal to the number of samples in
the observed signal. No iterations are required here and the algorithm
is shown to reduce to the matrix inverse algorithm of Cadzow [11]
as the additive noise power goes to zero. Finally, the recursive
least squares algorithm is a Kalman filter based method where the
extrapolated signal estimate is updated recursively as a new observation
sample arrives. The latter two methods are applicable in the presence
of noise and yield stable results. Finally these algorithms are shown to
be applicable to problems where one needs to discriminate as well as
extrapolate an interfering signal and a desired signal.

Several examples are considered to compare the various algorithms.




a8

I1. THE MAXIMUM ENTROPY METHOD [2-7]

Let {ui} denote a real, zero mean, stationary, Gaussian random
process whose covariance function is defined as
v, E[“iui+m]' (1)
We know r only on a finite window W defined as
W = {-p<m<p} . (2)
The maximum entropy method extrapolates Yo outside W by maximizing the

entropy

A /2
e nS(f)df (3)
-1/2
under the constraint
1/2 .
ro= s(£)ed2™Fdf , mew . (4)
-1/2 X

The solution gives the maximum entropy spectrum as

2

)
§(f) = ————5—— » 8, = d_n. (5)
-j2nfm m -m
[mz wame ]
This could be written as
2
S(F) = 5 3 (6)
E o e-j?nfm
m=0 k.
where the a, and a, are related by
min(p-m,m)
Bl ™ By ) Yk (7)
k=max[0,-m]

The coefficients (am} are determined by solving (4) and (6) which is equivalent

to solving (9) below. Alternatively, the {u;} could be characterized as an AR process

+

ne-10

%aUk-n * Fk (8)

u, =
k n

1




where 62 = E[ckz]. By writing the Yule-Walker equations for (8) it is a
simple matter to show that {am} are obtained by solving a set of simultaneous

linear equations*

Ra= 421 . B =R, (9)

L -

] 3]

Q

1

l = g— = ’ao é -]

Q

0 L Pl

where a and 1 are (p+1) x 1 vectors and R is a (p+1) x (p+1) covariance

matrix with entries corresponding to covariances on the window W, i.e.,

M r r\ rp—
Y'1 .
: "2
i
\ "
G et ¥ -rg J

*For a positive definite matrix R, (am} are quaranteed to be such that S(f)
is positive and (8) is asymptotically, a stationary random process.
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Strictly speaking, the covariance values frm, m € W} should be known
exactly. In practice, one only knows data values on a finite window.
Then, the covariances could be estimated as*

o M-|m|

rm " ukuk“‘lm', meW (]0)

k=1

where M is the size of the data window. For large M >> p, reasonable
estimates of ﬁh}cou1d be expected.

Note that this method does not require {ui} to be bandlimited (with
respect to the Nyquist rate). Also, the spectral density function is, in
view of (5) and (6), an all pole model. Thus, if the given observations
were of the form

" W o (1)
where " is a white noise process or another signal (e.g. clutter noise

which could be modeled by an AR process), the spectrum of {yk) would not

be an all pole model and may have to be approximated by a very high

order all pole model.

Example 1(a): Although there are many examples where the maximum entropy
method could be applied successfully [3,5,7] we consider a case where

it does not. We assume the observations to be given by
Yo T8 . 2 et (12)
where Sk represents a bandlimited signal whose spectrum lies in the

interval [fz.f3]and [-fz,-f3] and c, is an interference signal band-

limited in the interval ['fl’fl] and n, is a white noise process.

*In estimating r_, the divisor of M, rather than M-|m| is recormended.
Although this results in a biased estimate of L it yields a positive
definite sequence {rm} so that R is positive definite and the resulting
spectra is positive. See Parzen [15] for details.
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Figure 1(a) shows the spectra of the various signals. Figure 1(b) and 1(c) .

show the interference signal Ck and the actual signal Sy modeled as

Sk = 1.69 Sin(.397k).

Figure 1(d) shows the 17 samples of the available observations.

The signal to interference signal (to be called clutter) ratio, which

is defined as

= Peak to Peak Value of Signal
SCR* = 20 logy, r.m.s. value of clutter °’ (13)

is -4.1 dB and the signal to noise ratio, SNR, defined similarly is 19 dB.
Figure 1(e) shows the maximum entropy spectrum estimate. A peak is
expected at the position marked by the arrow. At this point the signal
estimate is 30 dB below the clutter peak and is indistinguishable from
the interfering signal. Figure 1(f) sths the spectrum estimated by

directly evaluating the Fourier spectrum (i.e. the periodogram) as

2
" 4

8
(1) = 37| I yexo(-g2nf)| L - T<f< (14)

| —

Equation (14) can be evaluated approximately by discretizing the variable
2 f and using a fast Fourier transform algorithm. The spectrum of Figure 1(f)
is the result of a 256 point FFT. We note that both of these estimates

are unsatisfactory.* We will see that the new algorithms introduced here

improve the estimated signal spectrum considerably.

*Note that for random signals, the periodogram is an inconsistent estimate.

{ Windowing techniques may be used to improve the spectrum estimate in the
sense that it would be a consistent estimate of a smoothed version of the
original spectrum. In this example, windowing did not improve the situation
in so far as the signal was concerned.
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e signal band limits
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Fig. la: Spectra of Signal, Clutter and Noise
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ITI. EXTRAPOLATION OF BANDLIMITED SIGNALS

3.1 Continuous Time Signals

Suppose we have a continuous, bandlimited function f(t) so that its
Fourier transform satisfies

Flw) =0 for |w| >0 . (15)

Let go(t) be a time limited segment of f(t) which is available as a

noise-free observation, viz.,

ey « &I &T
9p(t) = (16)
0 s SRR A

The problem is to extrapolate go(t) outside the interval [-T,T]. This
is the classical problem of extrapolation of analytic functions. The
existence of a unique solution can be established by observing that

bandlimitedness of f(t) implies it is analytic. This means all its

derivatives exist and are bounded so that from the Taylor series expansion
A2
f(T+a) = £(T) + Af'(T) + i ) S (17)

one can evaluate f(t) outside [-T,T]. In practice, (17) is not very
useful, because, not only does the series have to be truncated, but also,
the evaluation of various derivatives is a noise sensitive process. An
alternative algorithm suagested by Slepian, et al. [14], uses a series
expansion

f(t) = nzoan¢n(t.To) (18)

Bt o v
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where {¢n(t.To)) is a special set of complete orthonormal bandlimited
functions, called the prolate-spheroidal wave functions (PSWF), which are
defined for all t. The coefficients {an} can be evaluated as projections
of the known function go(t) on the basis functions {¢n}. Once {an} are
known, the right side of (18), considered valid for all t,gives the
extrapolated signal. In practice, this method also suffers from noise
limitations and errors due to truncation of the series. Moreover it
is extremely difficult to accurately generate the basis PSW functions
so that extrapolation in a practical situation is quite hopeless. For a
simole example, see Frieden [19].

Recently, Papoulis [8] has introduced an iterative scheme that appears
to do better than the PSWF expansion method. The algorithm has the ;
following steps. The first step is to compute the Fourier transform of ‘

go(t) as Go(w) and define

Gn(w), <
Filw) = s i (19)
¥ 0 y Jw] >0

( Compute f](t), the Fourier inverse of F](u) and let

f(t) , It] <7 .
g](t) = (20) |
fl(t)o Itl -3

Then compute G](m) = F[g](t)].

th

This is the first step of the iteration. At the n~" step form the

P | function

) & | Segih i < (21)
" 0 ,lul>e
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Find F"[Fn(m)] and form :

e s < T
g, (t) = (22)
fn(t) e FE} = 5F
Papoulis has theoretically shown that fn(t) converges to f(t) as

n-+x. If we define a band-limiting operator as
Bf(t) = f(t) ® ((sinot)/mt) (23)

where (sinot)/mt) represents the impulse response of a low pass filter, and

we define a time-limiting operator as

f(t) , [t] <T
Df(t) = It < (28)
0 , el >T ]

D=1-0

where I = identity operator (25)

then the foregoing algorithm can be written as [10]

——
PSP -

g9,(t) = g (t) + Hg _,(t)

| f(t) = £,(t) + GF_,(t) (26)
H=DB, G=8D
or [ L
-}
£ (t) = an 6k | f(t) . 6%=1
\ v k=0
- (27)
n
g, (t) = [ T H* | 9o(t)
k=0
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Either gn(t) or fn(t) may be considered as the extrapolated signal.

3.2 Extension to Discrete Time Signals

Sabri and Steenaart [10] have suggested a discrete version of this
algorithm, as follows.
Let y(k) be a discrete, bandlimited signal so that its Fourier trans-
form (i.e., Z transform evaluated on the unit circle) defined as
®
MR = I yep(aartk) o - <f <3 (28)
satisfies the relation*

V) =0, 5> Ifl >0 (29)

We are given a set of time limited, noise free observations

y(k) , -M <k <M
g,(k) =
0 , otherwise .

Given {go(k)}, the problem is to find an estimate of y(k) outside the

interval [-M,M]. Following section 3.1, we define infinite vectors

Y= Loy (k) ey (=1),900) (1) se ooy (k). 1T

o

g [...gn(-k)...gn(—l),gn(O),gn(l),...,gn(k)-..

-
where g, - [0,0.,,,0 go(-M),go(-M+1)....,go(-l),go(o),go(l)....go(M),0,0,...O] "
We also define a band-1imiting operator L, and a time-1imiting operator W,

as infinite matrices

*Thjs implies y(k) has been oversampled with respect to its Nyquist rate.
This occurs quite often when a system observes signals over a wide bandwidth.
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- _ sin2n(i-j)o . . _
L - {Q'i’j} ) Q'i‘j —;-(.TST)-J-)- ’ 1!J 0!11’12)'00
(31)
s fofs W ied <N
W g b oy g
0 , Otherwise
Also, let %
, W=1-W (32)
Then, one obtains from (27)
" B i ’)]Gk . (33)
‘ n+l k2o 1
G = LW
f] = Lg0
Defining
n
g &7 g (34)
" =0 ;
in the limit as n ~ » , we get
f, = .5 (35)
!
where
E s F8% eyt . (36)
k=0

The matrix E_ has been called the extrapolation matrix and it exists

if and only if no roots of G equal unity. In iterative form, the algorithm

becomes




ke
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In practice, the infinite matrix operator G is replaced by a finite
matrix, of size, say, NxN where N >> (2M+1). Later in this section we will

show that (I-G) is singular for N = =, but its finite approximation (N<=)

is non singular.

Existence and Convergence

Following Papoulis, it can be shown that the above iterative algorithm

satisfies the inequality

% %

J Y(f) - 6__(f)|%f > [ Y(f) - G (f)|%af (38)

-% %
which says that the mean square error is reduced at each step. However, the
extrapolated signal need not converge to the original signal y(k) because
the time limited discrete sianal does not have the analyticity property that
the continuous signal has. Indeed, as we show in the next section, the above
(discrete extrapolation) algorithm converges to a least squares, minimum

norm solution associated with the solution of the equation
WLy = g4

In terms of computational complexity, the iterative algorithm requires
about 4anogzN real operations (one operation = one multiplication and one
addition), where N is the size of the extrapolated vector (and is much larger
than M) and n is the number of iterations.

[f the extrapolation matrix E_is used, then once it has been computed,
it requires %(2M+1)(N-2M-1) operations to evaluate the extrapolated signal.

However a large (NxN) matrix which is i11 conditioned,has to be inverted.

(see next section)

e Pt i i pcii, 20N T e A
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IV. EXTRAPOLATION OF DISCRETE TIME, BANDLIMITED SIGNALS

Before proceeding to prove several results related to extrapolation
of discrete signals we first consider several definitions. Let A be an

arbitrary mxn matrix and consider the system of equations

Ay = z (39)

where y and z are nx1 and mx1 vectors respectively.

4.1 Definitions

Definition 1: Least Squares Solution

A least squares solution of (39), denoted by y, is such that
et Sl o e
|z - AJ||© = (z-Ay) (z-Ay) (40)
is minimum. This solution must therefore satisfy the equation
ATAy = AT2 (41)
If ATA is nonsingular (i.e. n < m and rank of A is n) then
1

= tA8) Az (42)

is the least squares solution and is unique. If m = n and A is nonsingular,

then
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If m < n, then ATA is necessarily singular and has rank at most m, Then
(41) does not have a unique solution.

Definition 2: Minimum Norm Least Squares Solution

Let y* denote this solution. Then y+ must be that solution of (41)

which has the minimum norm |]§|l2. Thus

y* = ming||911%; ATA7 = AT2) (44)
y
Clearly, if rank ATA is n then y+ = y. The minimum norm is simply
a constraint that makes the least squares solution unique for an arbitrary A.

Definition 3: Pseudo Inverse

We call A" the pseudo inverse of A[18], if for every equation (39),

the associated minimum norm least squares solution is given by

y =Az (45)

This pseudo inverse, also called the generalized inverse, satisfies

} the relations

AA+ - (AA+)T
ata = ()T
2 (46)
AATA = A
At = At
When rank A =n,
i
!
" E :
; 1 AT T A T O,
et
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1

- (ATa) AT

(47)

>
I

If rank A = m, then

=
at = AT(a") (48)

Definition 4: Singular Value Expansion [21]

In general an explicit expression for A*, of the type of (47) or (48)

is not available. However, A+ can be expressed as an expansion. Consider
the eigenvalue problems
T %
A'Rby = Xop
(49)
T“ =
AA Vi )\kwk

where k = 1,2,...,p and p is the rank of A. The vectors P and *k are of
sizes  nx1 and mx1 respectively. Since ATA and AAT are non-negative matrices,

these eigen-vectors exist and can be orthonormalized so that

"
o

.
b o e W)
(50)

.
V¥ = Se

From this, one can express the rectangular matrix A by the expansion, called

the singular value expansion, as




Y L TN

A o E Akwk¢k (5])
k=1

where Ak > 0, are called the singular values of A.

’ + 4
The pseudo inverse A can now be written as

p
+ 1 T
A= ) bV (52)
k=,7x; k¥k
4.2 Properties of L
Now we consider some useful properties of the low pass filter operator
defined in (31).

Property I: L is a symmetric operator, i.e., L = LT.

This follows
from its definition.
Property II: The Fourier spectrum of L is given by
e 0< |f] <o

L(f) = (53)
0, otherwise,

where - % < f < %u This is obvious since L is the Toeplitz matrix

formed by the Fourier inverse of &(f), the Towpass filter transfer function.

Property III: Let S be a (2M+1)x= matrix operator whose elements
are
1, i=j=041,%2,...,tM
S ;1 ° (54)
+J 0, otherwise
Basically S selects (2M+1) elements from an infinite vector. Consider

the (2M+1)x(2M+1) matrix

L= as' (55)
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Then

5 0 - sin2mo(i-j) . _ e

Ry mhgug SERE . SW g b <M (56)
Also
S$S=W (57)

where W is defined in (31).

Property IV: The operator L is idempotent, i.e.,

12 -t (58)

This is obvious because ideal low pass filtering a signal once is the

same as doing it twice, i.e.,

Ly = L(Ly)

P ! Note this implies the spectrum (or eigenvalues) of L must be composed
of zeros and ones only [see (53)]. }
Property V: For every M < =, L is positive definite. This follows

; by noting

e & 0 ® u i jen(m-n)f %*
| i 1L




P ————

-27-
M : 2
_ Jjemmf
= fo m);Mxme df
Lo
M 5
B fo,XM(f)lzdf, Xy(F) & 1 x ed?mf
m=-M

-0

>0, ifM<w

If M= =, then x_ = e I2ME oives Xy(f) = 8(f-£) so that

A Y&l =0
xTLx* = xTLx* =
0, [E]l > o

and is not positive definite. Thus, all the eigenvalues of L are positive

ML) >0, M<w

Property VI: Let Amax(f) denote the largest eigenvalue of C. Then

8

Amax(L) <1, Mc<

>

Thus, for any finite M, the eigenvalues of L are bounded in the interval

(0,1) i.e.,

8

0 <L) <1, Mc<

To prove (62) we note

X i
A (L) & max X Lx?
max &1 xx*

(59)

(60)

(61)

(62)

(63)
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From (59) we can write

g fo IXM(f)Izdf
)‘max(l-) 5 'F:I:}[;‘;Z
-1/2

(64)
|XM(f)’2df

Since, for M < =, XM(f) is the Fourier spectrum of a time limited signal,

it cannot be zero on any finite interval. Hence
Jo I (£)|24f e (£)|2df, ¥ M ]
woffor <[ o fr. vweno <}
LY > X 2
, Y M< o,

When M = =, one could maximize (64) by choosing a bandlimited signal so that
the above inequality will become an equality. This proves (62).

4.3 Iterative Extrapolation

With the above definitions and properties we are now ready to prove
the following results. Let y(k), k=0,%1,... be a discrete time bandlimited
signal as defined ir (28) and (29).

Furthermore, let this signal be observed without any noise over a

finite interval and define

2(k) = y(k), -M<k<M (65)

If z denotes a (2M+1)x1 vector and y is the infinite vector of {y(k)}, then

z =Sy
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Since y is bandlimited, it must satisfy

Ly =y

so that we can write

z = SLy

Theorem 1: Minimum Norm Least Squares Extrapolation Theorem

The iterative solution [see (32) to (37) and (57)]

f s o q = V240 v

q+l 1 q
G = L(1-8"s) = L(I-W)

E =l
f, = Lgy = LSz

*n-n-nu-usu!-null!In!!n!!lNﬂlll'l'!FH-F-F"'“-llllll-llllllﬁﬂ"'!|‘

(66)

(67)

2 +
converges to the minimum norm least squares solution y of (66). Moreover,

(67) is a special case of a gradient algorithm associated with the minimum

norm least squares optimization problem.

Proof: An iterative gradient algorithm associated with the minimum norm

least squares solution of the general equation (39) is

P
Yg#1 =Yg * 5 A (z-Ay,)

1

o

T

u

1 T
Az + (I - E-A A)yq

(68)

(69)

It is known that yq converges to y+ as q + «, under the following conditions [12]:

it e 1t OS—




|
i

] 2 .
a) 0<=¢————=— (70)
g T
Amax(A A)

b) The initial guess Yo must lie in the range space of ATA e.9., ¥y = 0.
From (66), letting

A= SL (1)
we get
aTa = LTsTsL = LuL (72)
AzelTsTz=182= 7, (73)
Hence (69) becomes
Vg1 = %-f1 e % LWLy, (74)
Now letting
Yo = 0

Lf, = f1 (75)

it is easily verified by induction that {yq} is a bandlimited sequence i.e.,
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K
Lyg = ¥qr  9°1.2.3... (76)
1
Using this in (74) we get
=lf +y_]_LH
yq+1 a 'l q o yq
= | £, + {1 - l-LH)y (77)
gl o q

For o = 1, (77) becomes the same as (67). Now it remains to show that this
algorithm converges for o = 1. From (70) and (72) this requires us to find
the largest eigenvalue of LWL. Now
A (LWL) = A (ATA) = 2 (AaT)
max “max max
T
xmax(SLs )
Amax(L)
] I YM<ow,

A

where we have used Property VI. Therefore, convergence of (77) is achieved

whenever

0 < b B Pl (78)

0’-
lmax(L)
Hence for o = 1, (77) converges. This completes the proof of Theorem 1.
An interesting question raised by the foregoing result is "What is the
optimal value of o?" In other words, we want to find the "steepest descent"

for the gradient algorithm. Defining the error vector at iteration step q as
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e *y-~y (79)

and noting that f] can also be written as

f = Lgy = LMWy = LWLy (80) ]
we obtain from (74)
R
Gy <1 = pEL)e (81)
1 q+]
= (T ~ SEMLY R R mig (82)

This shows the convergence rate of this extrapolation algorithm is linear.
Slow convergence of this algorithm has also been noted experimentally

by us and by Papoulis [8] and Sabri et al [10]. Since this is a gradient
algorithm, convergence can be improved by adjusting o at every iteration.

The optimal value is given by

0‘] & 34 A= SL, (83)
q i)
hq A Ahq

where hq is the gradient at step q, defined as

¥
"

T
A (z qu)
1’1 - Lblyq

(84)

This requires additional computations at every iteration step. If a constant

value of o is desired, it is given by [24]
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°opt = 2/(Amax(LNL) + xmin(LNL)]
Since
Amin(LNL) =0
Amax(LNL) <1
we can take
o . V-2<2n (85)
opt = - max

From our foregoing analysis we conclude the following about Papoulis'
iterative algorithm.

1. The solution converges to a minimum norm least squares solution. Note
that continuous version of the algorithm converges to the original band
limited signal y(t), as proven by Papoulis [8]. This reinforces the fact
that time limited discrete observations of a band limited signal need not

give its exact extrapolation. ;

2. The algorithm is a gradient algorithm. Hence its convergence is
linear and slow. It could be improved by going to the steepest descent
algorithm,

4.4 The Extrapolation Matrix

Now we consider the extrapolation matrix suggested by Sabri and Steenaart

(10]. This is the doubly infinite matrix defined as [see eqns. (32) to (36)]

£ = (1-6)7 (86)
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G = L(I-W)

In a practical situation the matrix G is truncated to a finite, but large,

NxN matrix, say GN defined as
Gy = Ly(Iy-Wy) (87)
and the corresponding extrapolation matrix is
g, = (6.5
N N °N

We intend to show that for every finite N, Ey exists. However, E_ does
not exist. Thus as N goes to infinity the sequence {EN} becomes an i11-

conditioned set of matrices.

Lemma 1: For every finite N, the matrix PN defined as
PN =1 - LN * LNNN (88)

is nonsingular. At N = =, PN is singular.
Proof: From Property V, the finite NxN matrix LN is positive definite.

Now consider the symmetric matrix

8
Cn = Pty

L =

2 4L - (89)

N N N°N

Since all the eigenvalues of LN lie in the interval (0,1) we have




A2 = A2 <y (90)

Therefore, for any Nx1 vector x,

2

xTL x* > XTL xX*
N N

Also

bt o
x L, W lax* =
" N N m=‘M n=_

(2)
> xmlm,nxn* >0

where {Qézz} are the (2M+1)x(2M+1) elements of LNZ, which is positive

1

definite. Clearly, then CN is positive definite. Hence PN = CNLN' exists

and is nonsingular.
At N = =, LNis singular. Consider the eigenvectors of the equation
LWLx = Ax (91a)
Since LWL is symmetric and is of rank (2M+1), there exists an x such that
LWx =0, x#0 (91b)

Moreover, for every such vector there exists a band-limited x

Lx

n
x

which is also a solution of (91a). Thus, for all such x we have




-36-

xTPx = xTPLx = xTLx - xTsz + xTLwLx
= x'Lx - x'Lx + x"LWLx
= xTLWLx
:0'

Thus P is singular.

4.5 The Generalized Inverse

Having noted that the foregoing approaches give a minimum norm least
squares solution, one may attempt to find it directly. We recall that the

given system of equations is

Sy = z (92)
Defining A = SL to give
mT = s TsT
= sLs' (93)
=L

We note that L is positive definite (Property V). Hence from Definition 3 and
Eqn. (48) we can write directly At = AT(AATY] which gives the extrapolation
matrix

€, - LTsT(sts™)™! (94)

and
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v o= UTsT(sts™) 2 (95)

This form of solution was obtained for the extrapolation problem by Cadzow
[11] by a different route. This method, we believe, is easier and more
direct. We note that while the extrapolation matrix E_ did not exist, the
extrapolation matrix EC exists. Moreover, C is only a (2M+1)x(2M+1)
Toeplitz matrix so that its dimensionality is much smaller. However, as M
becomes large or for certain combinations of M and o, f could be i11
conditioned. Experimentally, the i1l conditioning can be reduced by adding
a small diagonal term to E. This, however, will degrade the extrapolated
estimate.

4.6 Discrete Prolate Spheroidal Wave Functions and Singular Value Expansion

In an earlier section we had mentioned that a continuous band-1imited
signal could be extrapolated outside its observation interval, exactly, via
the PSWF expansion. For the case of discrete signals,a similar expansion
is possitle for the minimum norm least squares extrapolated estimate. This
is achieved via the singular value expansion described in Definition 4.
Papoulis and Bertram [20] have introduced the discrete PSWF earlier for
realization of digital filters whose impulse response is an all-zero model.
However, they have not shown any extrapolation properties of these PSWFs.
Here we introduce the discrete PSWFs which also extrapolate a discrete
band limited signal (known over a finite duration) to an infinite, minimum
norm least squares signal.

Following Definition 4 for A = SL, we consider the eigenvalue problems

AP, TRISRGEI Wy T AN 7 -
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T = = T = -
A'A$, = LWLO, = LS'SLo, = \&y» - M

A
~
A
=

(96)

ATy, = Ly, = SLSTW = Mg Mk <M (97)

A

where 1, > 0, and (@k} are « x 1 and {wk} are (2M#1)x1 orthogonal vectors i.e.,

et
ARG (98)
e
Vi ¥y = Sk
From (96), B must be a band-limited signal satisfying the condition
Loy = & (99)
because o, = (/3 JL(WLe, ), and Lz is band limited,¥z. Now define
£ = 5L¢k = S@k (100)
Then (96) gives
i -
LS Ek = Ak¢k
y
or i
qLeTg = XSt = N.E (101)
el - k™ "k kk

This shows Ep satisfies the same equation as Ve Hence Ex and Vi must

be proportional i.e.
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& = kY

Using the orthogonality condition (98) and the egns. (99), (100) and (97)

- we find
e .
% =
or €y ™ /Tk (102)
giving
ol s - M
u‘k_/rs¢k " )\k- 0, M<k<M (103)
.
Also from (96), this yields
wkzlfLSTka v - M<k<M (104)
i X ‘

fquation (103) states that the (2M+1)x1 vector Ve is simply obtained by selecting
the (2M+1) elements {®k(m). - M <m< M of ¢ and scaling them by x;]’z.

Eqn. (104) is remarkable in that the «x1 vector S is obtained by simply low

pass filterina the sequence {wk(m)} and scaling tﬁe result by x;]/z. This

means &, is the extrapolation of Uy obtained by simple low pass filtering and
scaling. Also noteworthy is the fact that the sequence {¢k(m). -®<m< w}

is orthogonal over the interval - M < m < M as well as over the infinite interval.

This property is similar to that of the continuous PSWFs. The (2M+1)x1 vectors

by are easily obtained by solving the eigenvalue problem of (97) i.e.
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M 2
ZM s1ninz£;—m) wk(m) \ kak(")‘ -M<n, k<M (105)

Once {wk} are obtained, {¢k} are given by (104) i.e., ;

M :
o = o= 1 sinZro(n.) y (m), -=<nge (106) ‘
m‘:- |

k

combining (105) and (106) we find
A-kwk("), -M f n f M, J

8, (n) = (107)

I ? sin2no(n-m
/ﬁk m=-M il

where - M < k < M. The extrapolated signal is obtained by applying (52)

¥ (m), otherwise

as
y+ = A"z
or
+ Mooa
ym= ] —=¢f(m), ¥m (108)
k=M VA,
where
r M M
Q=Y z= 1 ka(m)z,,1 = 1 y(mly(m) (109)
~ m=-M
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The functions {wk(n)} and {¢k(n)} have been obtained by Papoulis [20] and are
called the discrete PSWF. However, their usefulness in obtaining minimum norm
least squares extrapolation has not been noted earlier. Our extrapolation
algorithm requires the following steps. First calculate (2M+1) orthonormalized
vectors (each of size (2M+1)) by solving (105). Next obtain the (2M+1)

infinite size vectors ¢k according to (104) by low pass filtering and scaling

of Y- Then (108) and (109) give the extrapolated estimate from the observations
{y(m), -M<mc<M}.

Properties of Discrete PSWFs: We now summarize properties of these functions.

1. Let L be a low pass filter operator and [ be a (2M+1)x(2M+1) principal

minor of it, i.e.
£ o %R, ™R i-3=0,%1,...3(2M)

Then the orthonormalized eigenvectors of L, denoted by wk form a complete

orthonormal set of basis functions in (2M+1) dimensional vector space. Let

Ewk =¥, - MckgoM (110)

Xk >0
2. The discrete PSWF are formed from {wk} as «x1 vectors {¢k} and are defined as

_ 1
o * X==stk -M<k<M (1)

k

3. The PSWFs are orthonorma] over the infinite interval, i.e.

- - . ——————. . ~alr
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uf 0y (my (m) = 8, o (112)

m:—oo

4. The PSWFs are orthogonal over the finite interval [-M,M], i.e.,
M
=Z_M oy (m)og (m) = X, 8, o (113)

5. The Fourier transform ok(f) of {ok(m)} satisfies the eigenvalue integral

equation

g
fs"‘(im%’}f?;'l 0 (F)dF = 08 (F), |f] <o (114)

=0

The proof is obtained by Fourier transforming (111) and using (103).
6. The eigenvalues of L lie in the interval (0,1) i.e., 0 < Xk(L) < 1.
7. Let y(m) be a band limited signal whose spectrum lies in the interval
(-0,0). If y(k) is known over the interval [-M,M], then its minimum norm least
squares extrapolation estimate is given by
M a
+
y'm = T g (m), v
k=-M "k
(115)
M
a, = 1 y(mo, (m)
m=-M
Note that this gives y+(m) = y(m) for m e [-M,M].
So far we have considered only the case when there is no noise in the
observed signal. In the next few sections, we consider other algorithms where
additive noise or interfering signals are allowed in the observations. The

algorithms reduce to minimum norm least squares solutions in the absence of any

noise.
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V. A CONJUGATE GRADIENT ALGORITHM FOR SIGNAL EXTRAPOLATION

In this section we consider a slightly different but more general
problem than that considered in the previous section. We are interested in
extrapolation and discrimination of two interfering signals (see Example 1).

Let us assume that we are given m observations which may consist of
signal, clutter and noise, where the signal and clutter are bandlimited in
mutually exclusive bands (see Fig. 1(a)). The problem then is to obtain
estimates of extrapolated signal and clutter outside their observation
interval.

Let the Bandpass operator B operate on the signal in the signal band
t[fz,f3] and the low pass operator L operate on the clutter in the clutter
band f[O,f]].

We introduce operator notation:

S: original signal (infinite vector)
G clutter (infinite vector)

n: noise (mx1 vector)

y: observed samples (mx1 vector)

B: bandpass operator (infinite matrix)
[ Low pass operator (infinite matrix)
S: Selection operator (mx=)

The matrices B and L are Toeplitz matrices determined from the

sequences {bk}. {Qk} respectively, as the Fourier inverses [see Fig. 11],

'y sin(2nfgk) - sin(2nf k)
b, = 2| cos(zrfh)af - —~ (116)
f2
B= (b, .}

i-J
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f sin(2nf k)
' - 2[ coa Rl = ©(m7)
0 Tk
il

The selection matrix S, (introduced earlier also) is defined as
&= [0 5 0] (118)

where Im is an m x m identity matrix. The matrix selects the observed m
samples from an infinite size vector. The observation vector can be

written as

y=8s+Sc+n. (119)

Since s and ¢ are bandlimited signals they satisfy Bs = s and Lc = c.

Thus, we can write

y = SBs + SLc + n (120)
y =S[BL] [s| +n
@
éH)( +n (121)

s
when H = S[B L] and x = {} :
¢

Now the problem is to find an estimate of x, given y. In the
absence of clutter (c=0), the problem reduces to the extrapolation problem
considered earlier. The solution % obtained by minimizing the least

squares norm

J = |ly-HXII2

is given by
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% = (HTH) Ty .
where (HTH)']HT is the pseudo inverse operator of H provided (HTH)'] exists. 1
However, this is not the case as explained below. H

The infinite matrices B and L are Toeplitz and are diagonalized by the

Fourier transform operator. Therefore,

FIB LIFT =4 (f)

where F is the Fourier transform operator and FT is its conjugate transpose

and A (f) is as shown in figure 11.

& This also implies that the operators B and L are idempotent i.e.,

82 = B and L2 = L. From Fig. 11 the operator [B L] is singular which in

turn implies

HH = 3 sTs(e L] (123)

is singular, and has a rank of atmost m,
A number of approaches are once again possible to find the pseudo
inverse of H, as discussed in the previous section. Here we consider a two

step gradient method.
An example of a two step gradient method where initial convergence is

extremely rapid is the Conjugate Gradient Method [12,13] which is based
on the following ideas. Let Q denote the matrix HTH (which has dimension
2Nx2N to extrapolate the signal and clutter each to N points).

Let ¢ = 2N. A set of £ vectors {di} are conjugate if

T - i :
d; de =0, 1#£J.
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Since Q is symmetric a set of such vectors exist and forms a basis. The

solution vector can, therefore, be written as

X = a.d, .
k iti

1

ne-1e

1
The scalers {“i} and vectors {di} must be found in a computationally

feasible way. One way is via the algorithm [13]

~k+1 _ 2k
X = x + akdk
T (124)
e
k !
dy Qdy
where the {dk} are generated by
derr = O ¥ B
(125)
R
B w LK
k
dy Qdk
The vectors {Ck} are the gradients of J at each iteration
c, =Qi* - Wly=¢,, *+a ,0d (126)
k k-1 %k-1""k-1
and the initial conditions are
2 e
x =y and d] = C]. (127)

The minimum is achieved in at most % steps, and the method is step for

step better than a gradient method. A very attractive feature of this




Slpies

v

algorithm is that large reductions in error are achieved in the

first few steps [13].

Looking at the computations involved, we see that except for the single
matrix vector product Qdk. all vector operations involve only 2 multiplica-
tions. Hence, the order of computations for each iteration is 4mN.

(Note that Q is composed from Toeplitz matrices, so that advantage of FFT
method could be taken to evaluate Qd,.) When Q is highly il11-conditioned,
or singular, the iterations must be stopped at an optimum point. Alter-

natively, we may add a small value ¢ of the order of 10'6 to each diagonal

term of Q. This minimizes convergence ambiguity due to ill-conditioning

and stabilizes the iterations greatly.
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VI. A MEAN SQUARE EXTRAPOLATING FILTER

With the formulation and notation of the problem of Section V, we

have " 1
y=Hx+n. (128)

Now we assume that x is a random Gaussian vector whose autocorrelation
1 matrix is denoted by Rx. The minimum mean square estimate of x is given

by the Wiener filter as*

%= [E(xy) IE( NIy ey . (129)

Assuming noise to be independent of x, it is easy to obtain

L ; B
G = RH (HR.H+R )

(130)
Rn = E(n nT)
which is equivalent to the equations
T =
(HRXH +Rn)z =y
X = RxHTz
T TT
; R, = Elxx'] = E[(J)(s'c)]
T T
: E(ss ) E(sc’) . (140)

E(cs’) E(cc’)

+ We note here the similarity between the extrapolation problem and the
restoration problem in image processing [17]. For example, an image
blurred by a low pass type operator H and contaminated by additive noise
would give rise to an equation similar to (128).

* Here £ is the expectation operator.




P —

-49-

If signal and clutter are uncorrelated (non overlapping power spectra)

E(ssT) 0

Ram : e (141)

In the special case when the noise and clutter are absent, we have

H=8

Rn =R 0N

Thus, we have z = (SBRxBrST)']y. Since s(k) is a bandlimited

random process, we must have

LA
BRXB = Rx
which gives

A 10 Ty-1
X = RXS (SRXS )y
In the worst case, when we do not know Rx, we can simply assume the

power spectrum of x(k) to be flat in its bandwidth so that

and & = BST(SBST)+y where (SBST)+ is the nseudo inverse of (SBST). This is
the same result as obtained by Cadzow [See Eqn. (95)]. Thus Cadzow's one
shot method is a special case of this extrapolation filter. In the
presence of noise, the extrapolation filter estimate is

x = 8sT(ss™+r )Ty

where (SBST+Rn)'] exists and is unique.
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VII. A RECURSIVE EXTRAPOLATION ALGORITHM

In this section we present a recursive least squares algorithm based

on Kalman filtering techniques where the extrapolated signal estimate
is updated recursively as a new observation sample arrives. J

Based on the formulation of the problem as in section V we rewrite

equation (121):
y = Hx +n
The kth ¢ servation ¥y can be written as

¥, = hex + and  k=0,2,...,m-1 (142)

h

where h: is the kt row of H and M is zero mean white Gaussian noise.

The state equation for the unknown extrapolated vector x can be written

as

: Xrr * % (143)

with initial condition Xg = X where x is a random vector whose covariance

is given by
a5 o -nd
B cov(x,) = cov(x) = H = fo 1 (144)

Since H is idempotent i.e. HH = H, it is easy to verify that




B«
e
Phe = @
Hhy = h,
and
I
heH = hy

(145a)

(145b)

(145¢)

The Kalman filter associated with equations (142)-(144) is the recursive

Teast squares filter (e.g. see Nahi [16])

i s = i
a1 = %t 9 ly-hi %)y R =0

th

where Rk is the k= estimate of x and a,

The associated Riccati equation is

ol

% T
Pk+] = (I - N thkhk)P (1 = hkhkpk) + 9, k)gk
and
17 2 5 24
€y hkth ¥ % (k), % (k) = E[nk
1
g =—~Ph
k ck k 'k

Equation (147) then reduces to

is the Kalman filter gain.

(146)

(147)

(148)

(149)
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P =P - pnnl
c, k

k1 P g P kPk (150)

Letting P, = H + 3Pk, and using equations (145),

k
9P, .o = 3P, - - (I+3P, )h, h] (1+3P, ) (151) i
K41 k“ % kI (T+aPy

Defining

£y g = Pyhy (152a)
and

8. =& ok (152b)

k.2 - ok,kM

it follows from (151) that

o 8 B e ) b e
LT SRk T T Log i * By e dlby S etk oo T he

From (149) it follows that

2
9 - E;(hk+gk) (154)

From (145), (148) and (152), we get

2
C =gt o, (k) + Bk (155)
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Assuming that we are basing our extrapolation on m observed sample values and
that we are extrapolating to N points, the maximum storage required is mN.

The major computation is in the calculation of the Ern (153) and it is
’

easily seen that the order of computations involved is ~0(m2N).

Lolee




VIIT. EXAMPLES, RESULTS AND COMPARISONS

We will now consider several examples to study the performance of
the foregoing algorithms. In Example 1 below, we consider the observations

to be of the form
y(k) = s(k) + c(k) + n(k) , -M<k <M

where c(k) is the bandlimited clutter sequence, and s(k) is a bandlimited

signal whose band limits are known, i.e.,
S(w) =0,w ¢[w],u2].

n(k) is a zero mean white noise process with variance on2

In examples 2-9 the observations are of the form
y(k) = s(k) + n(k) 3 -M<k <M.

The following examples have been considered.

la. y(k) = <(k) + c(k) + n(k) ; -8 <k <8

s(k) = 1.69sin(.397k) f
o) = 0.382n

|

W, = 0.397n i

clutterband: o, = [0,0.167]
2

g, = 0.13
: SCR = -4.1dB, SNR = 19dB
1b. y(k) = s(k) + c(k); -8<kc<8
wy = I

A
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By .875w2 :
s(k) = 1.6951n(wsk) .
o 2 . 0
n
2 ﬂk)=sm(ﬁm%k)+sm(£&%m
2.
On-O j
@ = 0.8w2
w, = 21/50
3. s(k) = ﬁnLQ&%k)+ ﬂnLS&?U
o) 2 =0
n
Wy = 0
Wy = 0.1n i

The above two cases have the same signal, but the knowledge of band-
limits is different. In the following cases we have other signals with

different bandlimits. In examples 8 and 9 we have additive noise also.

' 4. s(k) = sin(.3657k) + sin(.3857k)
E 0n2 =0

w = L3m

wy = Ar

5. s(k) = sin(.36517k) + sin(.385mk)

w = .35m

Wy = L4m

Oy = 0

‘ . v . T




6. s(k) = sin(.985w2k) + sin(.975w2k)
U] - O.Q&A)z
W, = 0.4n
o 2 =0
n
sinwzk
7. s(k) = 0.1—TZ-E-
Wy =0
Wy =
o 0
Sinwzk
8 S(k) A 0.]—ugr‘
W) =0
w, = 0.1n
S 2 _
E(n(k)) = 0, o " = 0.01
SNR = 7.4dB
9) s(k) = ﬁnLQ&%k)+ ﬁnLB&bﬂ
W = .8w2
W, = 2n/50
E(n(k)) =0
0,2 = 0.1, SNR = 21.6dB

In example la, application of an eighth order autoregressive model to

the given data yields the spectrum shown in Fig 1(e).

The estimate seems
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to be completely dominated by the clutter. A 256-point DFT-spectrum
estimate of the data is shown in Fig. 1(f), and clearly, this also is
most unsatisfactory. Figures 1(g) and 1(h) show the signal extrapolated
to 199 points by the Conjugate Gradient Algorithm (using only 10 itera-
tions) and the Mean Square Extrapolation Filter. Figures 1(i) and 1(j)

show the corresponding results for the extrapolated clutter. The Maximum

Entropy method is applied to the extrapolated signal and extrapolated

clutter separately using a fifteenth order model. Fig. 1(k) and 1(%) show the
extrapolated signal spectra using the Conjugate Gradient Algorithm and the

: M.S. Extrapolation filter. They yield the signal peak at the correct

location. Figures 1(m) and 1(n) show the corresponding clutter spectra.

In example 1b, the signal bandwidth is increased from the previous case.
The actual spectra of signal and clutter are shown in fig. 2(a). The FFT
spectrum using 256 points is shown in fig. 2(b), and the Maximum Entropy
Spectrum using an eight order model in fig. 2(c). After extrapolating signal

and clutter to 125 points each, using the conjugate gradient algorithm their

respective spectra are calculated by the Maximum Entropy Method using 15th and 12th
! order models as shown in figures 2(d) and 2(e) respectively. Figure 2(d) shows

a peak at the signal frequency along with two subsidiary peaks which are seen

to occur exactly at the filter cut-off frequencies. Figure 2(f) shows the

FFT spectrum of the extrapé]ated signal. We note that this is a much better
estimate than shown in Figs. (2b) or 2c).

In examples 2-9 we consider either signal only or signal with additive,

white, Gaussian noise.
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Power -

clutter spectrum

signal band

F i

signal
e 9

1+

16w 3m .357 .4n T

Fiq. 2a: Spectra of Signal and Clutter
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The observed data consists of 17 samples and it is extrapolated to
199 points using
1. Papoulis' iterative algorithm
2. the matrix Ec

3. the matrix Ec after it has been stabilized

4. the conjugate gradient algorithm
5. the M.S. extrapolation filter for Examples 8 and 9 when the signal
contains noise.

Extrapolation using Papoulis' algorithm was done with 30 iterations and with

10 iterations using the conjugate gradient algorithm. %
Since all the algorithms ultimately yield a minimum norm least-squares

solution, we expect equivalent results from all the algorithms. Figure 3(c)

shows the extrapolation using Papoulis' algorithm, and is seen to give a

reasonable result. Figure 3(d) shows the extrapolation via the matrix Ec.

After a stabilizing diagonal term of the order of ]0'6 is added to the matrix

(SLST), the extrapolation obtained is as shown in figure 3(e). A close

examination of figures 3(a), 3(d) and 3(e) shows a slight phase shift

of the signal 3(d). This may be attributable to the ill-conditioning

of (SLST). Figure 3(f) shows the extrapolation by the Conjugate Gradient

method after 10 iterations. This algorithm gives a slightly inferior

extrapolation compared to the others in this case, and perhaps needs a few

more iterations. In later examples, however, it is seen that 10 iterations
are sufficient.

In the set of figures 4, we have the same signal and observations, but

the uncertainty in bandwidth is increased over the previous case. The
relatively degraded extrapolations achieved now show that there is a
trade-off between bandwidth uncertainty and extrapolation length, which is

to be expected. The set of figures 5, 6, 7 lead to similar conclusions for
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signals with differing frequencies and different bandwidths.

In the set of figures 8, we consider a sin x/x tvpe of signal. The
phase distortions of the extrapolated estimate in figure 8(d) dramatically
illustrate the ill-conditioned nature of (SLST). In the above examples
there was no noise in the observations. Now, we consider (examples 9 and
10) signals in additive zero mean, white Gaussian noise at the SNR 7.4dB,
21.6dB respectively. The results show that the Mean Square Extrapolation
filter, which takes noise statistics into account produces the best
extrapolation (Figs. 9(g) and 10(g)) among the algorithms considered
experimentally. Similar results are to be expected form the recursive

extrapolation algorithm of section VII. Further simulations are required

to study the numerical behavior of this algorithm.




-69-

(sa|dwes £|) SuOL3eAU3SQQ UBALY :QE ‘bL4

Bt )

|
|
i
|
|
|

|

X

v

|

|

Gl 60’ GS C0°0 0C"* G4 C0" GO
L —_— e

|VEVRVEVEVEVEVEVEVEVEVE

leub<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>